|
|
@@ -23,64 +23,64 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
#include <string.h>
|
|
|
|
|
|
#if defined(__AVR__)
|
|
|
- #include <avr/io.h>
|
|
|
- #include <avr/pgmspace.h>
|
|
|
+# include <avr/io.h>
|
|
|
+# include <avr/pgmspace.h>
|
|
|
#elif defined(ESP8266)
|
|
|
- #include <pgmspace.h>
|
|
|
-#else // defined(ESP8266)
|
|
|
- #define PROGMEM
|
|
|
- #define memcpy_P(des, src, len) memcpy(des, src, len)
|
|
|
-#endif // defined(__AVR__)
|
|
|
+# include <pgmspace.h>
|
|
|
+#else // defined(ESP8266)
|
|
|
+# define PROGMEM
|
|
|
+# define memcpy_P(des, src, len) memcpy(des, src, len)
|
|
|
+#endif // defined(__AVR__)
|
|
|
|
|
|
// Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
|
|
|
// for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
|
|
|
|
|
|
// Fundamental Commands
|
|
|
-#define CONTRAST 0x81
|
|
|
-#define DISPLAY_ALL_ON 0xA5
|
|
|
-#define DISPLAY_ALL_ON_RESUME 0xA4
|
|
|
-#define NORMAL_DISPLAY 0xA6
|
|
|
-#define DISPLAY_ON 0xAF
|
|
|
-#define DISPLAY_OFF 0xAE
|
|
|
-#define NOP 0xE3
|
|
|
+#define CONTRAST 0x81
|
|
|
+#define DISPLAY_ALL_ON 0xA5
|
|
|
+#define DISPLAY_ALL_ON_RESUME 0xA4
|
|
|
+#define NORMAL_DISPLAY 0xA6
|
|
|
+#define DISPLAY_ON 0xAF
|
|
|
+#define DISPLAY_OFF 0xAE
|
|
|
+#define NOP 0xE3
|
|
|
|
|
|
// Scrolling Commands
|
|
|
-#define ACTIVATE_SCROLL 0x2F
|
|
|
-#define DEACTIVATE_SCROLL 0x2E
|
|
|
-#define SCROLL_RIGHT 0x26
|
|
|
-#define SCROLL_LEFT 0x27
|
|
|
-#define SCROLL_RIGHT_UP 0x29
|
|
|
-#define SCROLL_LEFT_UP 0x2A
|
|
|
+#define ACTIVATE_SCROLL 0x2F
|
|
|
+#define DEACTIVATE_SCROLL 0x2E
|
|
|
+#define SCROLL_RIGHT 0x26
|
|
|
+#define SCROLL_LEFT 0x27
|
|
|
+#define SCROLL_RIGHT_UP 0x29
|
|
|
+#define SCROLL_LEFT_UP 0x2A
|
|
|
|
|
|
// Addressing Setting Commands
|
|
|
-#define MEMORY_MODE 0x20
|
|
|
-#define COLUMN_ADDR 0x21
|
|
|
-#define PAGE_ADDR 0x22
|
|
|
-#define PAM_SETCOLUMN_LSB 0x00
|
|
|
-#define PAM_SETCOLUMN_MSB 0x10
|
|
|
-#define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7
|
|
|
+#define MEMORY_MODE 0x20
|
|
|
+#define COLUMN_ADDR 0x21
|
|
|
+#define PAGE_ADDR 0x22
|
|
|
+#define PAM_SETCOLUMN_LSB 0x00
|
|
|
+#define PAM_SETCOLUMN_MSB 0x10
|
|
|
+#define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7
|
|
|
|
|
|
// Hardware Configuration Commands
|
|
|
-#define DISPLAY_START_LINE 0x40
|
|
|
-#define SEGMENT_REMAP 0xA0
|
|
|
-#define SEGMENT_REMAP_INV 0xA1
|
|
|
-#define MULTIPLEX_RATIO 0xA8
|
|
|
-#define COM_SCAN_INC 0xC0
|
|
|
-#define COM_SCAN_DEC 0xC8
|
|
|
-#define DISPLAY_OFFSET 0xD3
|
|
|
-#define COM_PINS 0xDA
|
|
|
-#define COM_PINS_SEQ 0x02
|
|
|
-#define COM_PINS_ALT 0x12
|
|
|
-#define COM_PINS_SEQ_LR 0x22
|
|
|
-#define COM_PINS_ALT_LR 0x32
|
|
|
+#define DISPLAY_START_LINE 0x40
|
|
|
+#define SEGMENT_REMAP 0xA0
|
|
|
+#define SEGMENT_REMAP_INV 0xA1
|
|
|
+#define MULTIPLEX_RATIO 0xA8
|
|
|
+#define COM_SCAN_INC 0xC0
|
|
|
+#define COM_SCAN_DEC 0xC8
|
|
|
+#define DISPLAY_OFFSET 0xD3
|
|
|
+#define COM_PINS 0xDA
|
|
|
+#define COM_PINS_SEQ 0x02
|
|
|
+#define COM_PINS_ALT 0x12
|
|
|
+#define COM_PINS_SEQ_LR 0x22
|
|
|
+#define COM_PINS_ALT_LR 0x32
|
|
|
|
|
|
// Timing & Driving Commands
|
|
|
-#define DISPLAY_CLOCK 0xD5
|
|
|
-#define PRE_CHARGE_PERIOD 0xD9
|
|
|
-#define VCOM_DETECT 0xDB
|
|
|
+#define DISPLAY_CLOCK 0xD5
|
|
|
+#define PRE_CHARGE_PERIOD 0xD9
|
|
|
+#define VCOM_DETECT 0xDB
|
|
|
|
|
|
// Charge Pump Commands
|
|
|
-#define CHARGE_PUMP 0x8D
|
|
|
+#define CHARGE_PUMP 0x8D
|
|
|
|
|
|
// Misc defines
|
|
|
#define OLED_TIMEOUT 60000
|
|
|
@@ -91,12 +91,12 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
#define I2C_CMD 0x00
|
|
|
#define I2C_DATA 0x40
|
|
|
#if defined(__AVR__)
|
|
|
- // already defined on ARM
|
|
|
- #define I2C_TIMEOUT 100
|
|
|
- #define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
|
|
|
-#else // defined(__AVR__)
|
|
|
- #define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
|
|
|
-#endif // defined(__AVR__)
|
|
|
+// already defined on ARM
|
|
|
+# define I2C_TIMEOUT 100
|
|
|
+# define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
|
|
|
+#else // defined(__AVR__)
|
|
|
+# define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
|
|
|
+#endif // defined(__AVR__)
|
|
|
#define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
|
|
|
#define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, I2C_TIMEOUT)
|
|
|
|
|
|
@@ -106,16 +106,16 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
// this is so we don't end up with rounding errors with
|
|
|
// parts of the display unusable or don't get cleared correctly
|
|
|
// and also allows for drawing & inverting
|
|
|
-uint8_t oled_buffer[OLED_MATRIX_SIZE];
|
|
|
-uint8_t* oled_cursor;
|
|
|
-OLED_BLOCK_TYPE oled_dirty = 0;
|
|
|
-bool oled_initialized = false;
|
|
|
-bool oled_active = false;
|
|
|
-bool oled_scrolling = false;
|
|
|
-uint8_t oled_rotation = 0;
|
|
|
-uint8_t oled_rotation_width = 0;
|
|
|
+uint8_t oled_buffer[OLED_MATRIX_SIZE];
|
|
|
+uint8_t * oled_cursor;
|
|
|
+OLED_BLOCK_TYPE oled_dirty = 0;
|
|
|
+bool oled_initialized = false;
|
|
|
+bool oled_active = false;
|
|
|
+bool oled_scrolling = false;
|
|
|
+uint8_t oled_rotation = 0;
|
|
|
+uint8_t oled_rotation_width = 0;
|
|
|
#if !defined(OLED_DISABLE_TIMEOUT)
|
|
|
- uint16_t oled_last_activity;
|
|
|
+uint16_t oled_last_activity;
|
|
|
#endif
|
|
|
|
|
|
// Internal variables to reduce math instructions
|
|
|
@@ -123,438 +123,415 @@ uint8_t oled_rotation_width = 0;
|
|
|
#if defined(__AVR__)
|
|
|
// identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
|
|
|
// probably should move this into i2c_master...
|
|
|
-static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t* data, uint16_t length, uint16_t timeout) {
|
|
|
- i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
|
|
|
+static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t *data, uint16_t length, uint16_t timeout) {
|
|
|
+ i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
|
|
|
|
|
|
- for (uint16_t i = 0; i < length && status >= 0; i++) {
|
|
|
- status = i2c_write(pgm_read_byte((const char*)data++), timeout);
|
|
|
- if (status) break;
|
|
|
- }
|
|
|
+ for (uint16_t i = 0; i < length && status >= 0; i++) {
|
|
|
+ status = i2c_write(pgm_read_byte((const char *)data++), timeout);
|
|
|
+ if (status) break;
|
|
|
+ }
|
|
|
|
|
|
- i2c_stop();
|
|
|
+ i2c_stop();
|
|
|
|
|
|
- return status;
|
|
|
+ return status;
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
// Flips the rendering bits for a character at the current cursor position
|
|
|
-static void InvertCharacter(uint8_t *cursor)
|
|
|
-{
|
|
|
- const uint8_t *end = cursor + OLED_FONT_WIDTH;
|
|
|
- while (cursor < end) {
|
|
|
- *cursor = ~(*cursor);
|
|
|
- cursor++;
|
|
|
- }
|
|
|
+static void InvertCharacter(uint8_t *cursor) {
|
|
|
+ const uint8_t *end = cursor + OLED_FONT_WIDTH;
|
|
|
+ while (cursor < end) {
|
|
|
+ *cursor = ~(*cursor);
|
|
|
+ cursor++;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
bool oled_init(uint8_t rotation) {
|
|
|
- oled_rotation = oled_init_user(rotation);
|
|
|
- if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
- oled_rotation_width = OLED_DISPLAY_WIDTH;
|
|
|
- } else {
|
|
|
- oled_rotation_width = OLED_DISPLAY_HEIGHT;
|
|
|
- }
|
|
|
- i2c_init();
|
|
|
-
|
|
|
- static const uint8_t PROGMEM display_setup1[] = {
|
|
|
- I2C_CMD,
|
|
|
- DISPLAY_OFF,
|
|
|
- DISPLAY_CLOCK, 0x80,
|
|
|
- MULTIPLEX_RATIO, OLED_DISPLAY_HEIGHT - 1,
|
|
|
- DISPLAY_OFFSET, 0x00,
|
|
|
- DISPLAY_START_LINE | 0x00,
|
|
|
- CHARGE_PUMP, 0x14,
|
|
|
+ oled_rotation = oled_init_user(rotation);
|
|
|
+ if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
+ oled_rotation_width = OLED_DISPLAY_WIDTH;
|
|
|
+ } else {
|
|
|
+ oled_rotation_width = OLED_DISPLAY_HEIGHT;
|
|
|
+ }
|
|
|
+ i2c_init();
|
|
|
+
|
|
|
+ static const uint8_t PROGMEM display_setup1[] = {
|
|
|
+ I2C_CMD,
|
|
|
+ DISPLAY_OFF,
|
|
|
+ DISPLAY_CLOCK,
|
|
|
+ 0x80,
|
|
|
+ MULTIPLEX_RATIO,
|
|
|
+ OLED_DISPLAY_HEIGHT - 1,
|
|
|
+ DISPLAY_OFFSET,
|
|
|
+ 0x00,
|
|
|
+ DISPLAY_START_LINE | 0x00,
|
|
|
+ CHARGE_PUMP,
|
|
|
+ 0x14,
|
|
|
#if (OLED_IC != OLED_IC_SH1106)
|
|
|
- // MEMORY_MODE is unsupported on SH1106 (Page Addressing only)
|
|
|
- MEMORY_MODE, 0x00, // Horizontal addressing mode
|
|
|
+ // MEMORY_MODE is unsupported on SH1106 (Page Addressing only)
|
|
|
+ MEMORY_MODE,
|
|
|
+ 0x00, // Horizontal addressing mode
|
|
|
#endif
|
|
|
- };
|
|
|
- if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
|
|
|
- print("oled_init cmd set 1 failed\n");
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
|
|
|
- static const uint8_t PROGMEM display_normal[] = {
|
|
|
- I2C_CMD,
|
|
|
- SEGMENT_REMAP_INV,
|
|
|
- COM_SCAN_DEC };
|
|
|
- if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
|
|
|
- print("oled_init cmd normal rotation failed\n");
|
|
|
- return false;
|
|
|
+ };
|
|
|
+ if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("oled_init cmd set 1 failed\n");
|
|
|
+ return false;
|
|
|
}
|
|
|
- } else {
|
|
|
- static const uint8_t PROGMEM display_flipped[] = {
|
|
|
- I2C_CMD,
|
|
|
- SEGMENT_REMAP,
|
|
|
- COM_SCAN_INC };
|
|
|
- if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
|
|
|
- print("display_flipped failed\n");
|
|
|
- return false;
|
|
|
+
|
|
|
+ if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
|
|
|
+ static const uint8_t PROGMEM display_normal[] = {I2C_CMD, SEGMENT_REMAP_INV, COM_SCAN_DEC};
|
|
|
+ if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("oled_init cmd normal rotation failed\n");
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ static const uint8_t PROGMEM display_flipped[] = {I2C_CMD, SEGMENT_REMAP, COM_SCAN_INC};
|
|
|
+ if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("display_flipped failed\n");
|
|
|
+ return false;
|
|
|
+ }
|
|
|
}
|
|
|
- }
|
|
|
-
|
|
|
- static const uint8_t PROGMEM display_setup2[] = {
|
|
|
- I2C_CMD,
|
|
|
- COM_PINS, OLED_COM_PINS,
|
|
|
- CONTRAST, 0x8F,
|
|
|
- PRE_CHARGE_PERIOD, 0xF1,
|
|
|
- VCOM_DETECT, 0x40,
|
|
|
- DISPLAY_ALL_ON_RESUME,
|
|
|
- NORMAL_DISPLAY,
|
|
|
- DEACTIVATE_SCROLL,
|
|
|
- DISPLAY_ON };
|
|
|
- if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
|
|
|
- print("display_setup2 failed\n");
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- oled_clear();
|
|
|
- oled_initialized = true;
|
|
|
- oled_active = true;
|
|
|
- oled_scrolling = false;
|
|
|
- return true;
|
|
|
-}
|
|
|
|
|
|
-__attribute__((weak))
|
|
|
-oled_rotation_t oled_init_user(oled_rotation_t rotation) {
|
|
|
- return rotation;
|
|
|
+ static const uint8_t PROGMEM display_setup2[] = {I2C_CMD, COM_PINS, OLED_COM_PINS, CONTRAST, 0x8F, PRE_CHARGE_PERIOD, 0xF1, VCOM_DETECT, 0x40, DISPLAY_ALL_ON_RESUME, NORMAL_DISPLAY, DEACTIVATE_SCROLL, DISPLAY_ON};
|
|
|
+ if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("display_setup2 failed\n");
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ oled_clear();
|
|
|
+ oled_initialized = true;
|
|
|
+ oled_active = true;
|
|
|
+ oled_scrolling = false;
|
|
|
+ return true;
|
|
|
}
|
|
|
|
|
|
+__attribute__((weak)) oled_rotation_t oled_init_user(oled_rotation_t rotation) { return rotation; }
|
|
|
+
|
|
|
void oled_clear(void) {
|
|
|
- memset(oled_buffer, 0, sizeof(oled_buffer));
|
|
|
- oled_cursor = &oled_buffer[0];
|
|
|
- oled_dirty = -1; // -1 will be max value as long as display_dirty is unsigned type
|
|
|
+ memset(oled_buffer, 0, sizeof(oled_buffer));
|
|
|
+ oled_cursor = &oled_buffer[0];
|
|
|
+ oled_dirty = -1; // -1 will be max value as long as display_dirty is unsigned type
|
|
|
}
|
|
|
|
|
|
-static void calc_bounds(uint8_t update_start, uint8_t* cmd_array)
|
|
|
-{
|
|
|
- // Calculate commands to set memory addressing bounds.
|
|
|
- uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
|
|
|
- uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
|
|
|
+static void calc_bounds(uint8_t update_start, uint8_t *cmd_array) {
|
|
|
+ // Calculate commands to set memory addressing bounds.
|
|
|
+ uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
|
|
|
+ uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
|
|
|
#if (OLED_IC == OLED_IC_SH1106)
|
|
|
- // Commands for Page Addressing Mode. Sets starting page and column; has no end bound.
|
|
|
- // Column value must be split into high and low nybble and sent as two commands.
|
|
|
- cmd_array[0] = PAM_PAGE_ADDR | start_page;
|
|
|
- cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
|
|
|
- cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
|
|
|
- cmd_array[3] = NOP;
|
|
|
- cmd_array[4] = NOP;
|
|
|
- cmd_array[5] = NOP;
|
|
|
+ // Commands for Page Addressing Mode. Sets starting page and column; has no end bound.
|
|
|
+ // Column value must be split into high and low nybble and sent as two commands.
|
|
|
+ cmd_array[0] = PAM_PAGE_ADDR | start_page;
|
|
|
+ cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
|
|
|
+ cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
|
|
|
+ cmd_array[3] = NOP;
|
|
|
+ cmd_array[4] = NOP;
|
|
|
+ cmd_array[5] = NOP;
|
|
|
#else
|
|
|
- // Commands for use in Horizontal Addressing mode.
|
|
|
- cmd_array[1] = start_column;
|
|
|
- cmd_array[4] = start_page;
|
|
|
- cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
|
|
|
- cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
|
|
|
+ // Commands for use in Horizontal Addressing mode.
|
|
|
+ cmd_array[1] = start_column;
|
|
|
+ cmd_array[4] = start_page;
|
|
|
+ cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
|
|
|
+ cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
|
|
|
#endif
|
|
|
}
|
|
|
|
|
|
-static void calc_bounds_90(uint8_t update_start, uint8_t* cmd_array)
|
|
|
-{
|
|
|
- cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
|
|
|
- cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
|
|
|
- cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];;
|
|
|
- cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
|
|
|
+static void calc_bounds_90(uint8_t update_start, uint8_t *cmd_array) {
|
|
|
+ cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
|
|
|
+ cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
|
|
|
+ cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];
|
|
|
+ ;
|
|
|
+ cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
|
|
|
}
|
|
|
|
|
|
-uint8_t crot(uint8_t a, int8_t n)
|
|
|
-{
|
|
|
- const uint8_t mask = 0x7;
|
|
|
- n &= mask;
|
|
|
- return a << n | a >> (-n & mask);
|
|
|
+uint8_t crot(uint8_t a, int8_t n) {
|
|
|
+ const uint8_t mask = 0x7;
|
|
|
+ n &= mask;
|
|
|
+ return a << n | a >> (-n & mask);
|
|
|
}
|
|
|
|
|
|
-static void rotate_90(const uint8_t* src, uint8_t* dest)
|
|
|
-{
|
|
|
- for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
|
|
|
- uint8_t selector = (1 << i);
|
|
|
- for (uint8_t j = 0; j < 8; ++j) {
|
|
|
- dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
|
|
|
+static void rotate_90(const uint8_t *src, uint8_t *dest) {
|
|
|
+ for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
|
|
|
+ uint8_t selector = (1 << i);
|
|
|
+ for (uint8_t j = 0; j < 8; ++j) {
|
|
|
+ dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
|
|
|
+ }
|
|
|
}
|
|
|
- }
|
|
|
}
|
|
|
|
|
|
void oled_render(void) {
|
|
|
- // Do we have work to do?
|
|
|
- if (!oled_dirty || oled_scrolling) {
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- // Find first dirty block
|
|
|
- uint8_t update_start = 0;
|
|
|
- while (!(oled_dirty & (1 << update_start))) { ++update_start; }
|
|
|
-
|
|
|
- // Set column & page position
|
|
|
- static uint8_t display_start[] = {
|
|
|
- I2C_CMD,
|
|
|
- COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1,
|
|
|
- PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1 };
|
|
|
- if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
- calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
|
|
|
- } else {
|
|
|
- calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
|
|
|
- }
|
|
|
-
|
|
|
- // Send column & page position
|
|
|
- if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
|
|
|
- print("oled_render offset command failed\n");
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
- // Send render data chunk as is
|
|
|
- if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
|
|
|
- print("oled_render data failed\n");
|
|
|
- return;
|
|
|
+ // Do we have work to do?
|
|
|
+ if (!oled_dirty || oled_scrolling) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Find first dirty block
|
|
|
+ uint8_t update_start = 0;
|
|
|
+ while (!(oled_dirty & (1 << update_start))) {
|
|
|
+ ++update_start;
|
|
|
}
|
|
|
- } else {
|
|
|
- // Rotate the render chunks
|
|
|
- const static uint8_t source_map[] = OLED_SOURCE_MAP;
|
|
|
- const static uint8_t target_map[] = OLED_TARGET_MAP;
|
|
|
-
|
|
|
- static uint8_t temp_buffer[OLED_BLOCK_SIZE];
|
|
|
- memset(temp_buffer, 0, sizeof(temp_buffer));
|
|
|
- for(uint8_t i = 0; i < sizeof(source_map); ++i) {
|
|
|
- rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
|
|
|
+
|
|
|
+ // Set column & page position
|
|
|
+ static uint8_t display_start[] = {I2C_CMD, COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1};
|
|
|
+ if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
+ calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
|
|
|
+ } else {
|
|
|
+ calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
|
|
|
}
|
|
|
|
|
|
- // Send render data chunk after rotating
|
|
|
- if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
|
|
|
- print("oled_render data failed\n");
|
|
|
- return;
|
|
|
+ // Send column & page position
|
|
|
+ if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("oled_render offset command failed\n");
|
|
|
+ return;
|
|
|
}
|
|
|
- }
|
|
|
|
|
|
- // Turn on display if it is off
|
|
|
- oled_on();
|
|
|
+ if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
+ // Send render data chunk as is
|
|
|
+ if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("oled_render data failed\n");
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // Rotate the render chunks
|
|
|
+ const static uint8_t source_map[] = OLED_SOURCE_MAP;
|
|
|
+ const static uint8_t target_map[] = OLED_TARGET_MAP;
|
|
|
+
|
|
|
+ static uint8_t temp_buffer[OLED_BLOCK_SIZE];
|
|
|
+ memset(temp_buffer, 0, sizeof(temp_buffer));
|
|
|
+ for (uint8_t i = 0; i < sizeof(source_map); ++i) {
|
|
|
+ rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Send render data chunk after rotating
|
|
|
+ if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("oled_render data failed\n");
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- // Clear dirty flag
|
|
|
- oled_dirty &= ~(1 << update_start);
|
|
|
+ // Turn on display if it is off
|
|
|
+ oled_on();
|
|
|
+
|
|
|
+ // Clear dirty flag
|
|
|
+ oled_dirty &= ~(1 << update_start);
|
|
|
}
|
|
|
|
|
|
void oled_set_cursor(uint8_t col, uint8_t line) {
|
|
|
- uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
|
|
|
+ uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
|
|
|
|
|
|
- // Out of bounds?
|
|
|
- if (index >= OLED_MATRIX_SIZE) {
|
|
|
- index = 0;
|
|
|
- }
|
|
|
+ // Out of bounds?
|
|
|
+ if (index >= OLED_MATRIX_SIZE) {
|
|
|
+ index = 0;
|
|
|
+ }
|
|
|
|
|
|
- oled_cursor = &oled_buffer[index];
|
|
|
+ oled_cursor = &oled_buffer[index];
|
|
|
}
|
|
|
|
|
|
void oled_advance_page(bool clearPageRemainder) {
|
|
|
- uint16_t index = oled_cursor - &oled_buffer[0];
|
|
|
- uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
|
|
|
-
|
|
|
- if (clearPageRemainder) {
|
|
|
- // Remaining Char count
|
|
|
- remaining = remaining / OLED_FONT_WIDTH;
|
|
|
-
|
|
|
- // Write empty character until next line
|
|
|
- while (remaining--)
|
|
|
- oled_write_char(' ', false);
|
|
|
- } else {
|
|
|
- // Next page index out of bounds?
|
|
|
- if (index + remaining >= OLED_MATRIX_SIZE) {
|
|
|
- index = 0;
|
|
|
- remaining = 0;
|
|
|
+ uint16_t index = oled_cursor - &oled_buffer[0];
|
|
|
+ uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
|
|
|
+
|
|
|
+ if (clearPageRemainder) {
|
|
|
+ // Remaining Char count
|
|
|
+ remaining = remaining / OLED_FONT_WIDTH;
|
|
|
+
|
|
|
+ // Write empty character until next line
|
|
|
+ while (remaining--) oled_write_char(' ', false);
|
|
|
+ } else {
|
|
|
+ // Next page index out of bounds?
|
|
|
+ if (index + remaining >= OLED_MATRIX_SIZE) {
|
|
|
+ index = 0;
|
|
|
+ remaining = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ oled_cursor = &oled_buffer[index + remaining];
|
|
|
}
|
|
|
-
|
|
|
- oled_cursor = &oled_buffer[index + remaining];
|
|
|
- }
|
|
|
}
|
|
|
|
|
|
void oled_advance_char(void) {
|
|
|
- uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
|
|
|
- uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
|
|
|
+ uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
|
|
|
+ uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
|
|
|
|
|
|
- // Do we have enough space on the current line for the next character
|
|
|
- if (remainingSpace < OLED_FONT_WIDTH) {
|
|
|
- nextIndex += remainingSpace;
|
|
|
- }
|
|
|
+ // Do we have enough space on the current line for the next character
|
|
|
+ if (remainingSpace < OLED_FONT_WIDTH) {
|
|
|
+ nextIndex += remainingSpace;
|
|
|
+ }
|
|
|
|
|
|
- // Did we go out of bounds
|
|
|
- if (nextIndex >= OLED_MATRIX_SIZE) {
|
|
|
- nextIndex = 0;
|
|
|
- }
|
|
|
+ // Did we go out of bounds
|
|
|
+ if (nextIndex >= OLED_MATRIX_SIZE) {
|
|
|
+ nextIndex = 0;
|
|
|
+ }
|
|
|
|
|
|
- // Update cursor position
|
|
|
- oled_cursor = &oled_buffer[nextIndex];
|
|
|
+ // Update cursor position
|
|
|
+ oled_cursor = &oled_buffer[nextIndex];
|
|
|
}
|
|
|
|
|
|
// Main handler that writes character data to the display buffer
|
|
|
void oled_write_char(const char data, bool invert) {
|
|
|
- // Advance to the next line if newline
|
|
|
- if (data == '\n') {
|
|
|
- // Old source wrote ' ' until end of line...
|
|
|
- oled_advance_page(true);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- // copy the current render buffer to check for dirty after
|
|
|
- static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
|
|
|
- memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
|
|
|
-
|
|
|
- // set the reder buffer data
|
|
|
- uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
|
|
|
- if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
|
|
|
- memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
|
|
|
- } else {
|
|
|
- const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
|
|
|
- memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
|
|
|
- }
|
|
|
-
|
|
|
- // Invert if needed
|
|
|
- if (invert) {
|
|
|
- InvertCharacter(oled_cursor);
|
|
|
- }
|
|
|
-
|
|
|
- // Dirty check
|
|
|
- if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
|
|
|
- uint16_t index = oled_cursor - &oled_buffer[0];
|
|
|
- oled_dirty |= (1 << (index / OLED_BLOCK_SIZE));
|
|
|
- // Edgecase check if the written data spans the 2 chunks
|
|
|
- oled_dirty |= (1 << ((index + OLED_FONT_WIDTH) / OLED_BLOCK_SIZE));
|
|
|
- }
|
|
|
-
|
|
|
- // Finally move to the next char
|
|
|
- oled_advance_char();
|
|
|
+ // Advance to the next line if newline
|
|
|
+ if (data == '\n') {
|
|
|
+ // Old source wrote ' ' until end of line...
|
|
|
+ oled_advance_page(true);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // copy the current render buffer to check for dirty after
|
|
|
+ static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
|
|
|
+ memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
|
|
|
+
|
|
|
+ // set the reder buffer data
|
|
|
+ uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
|
|
|
+ if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
|
|
|
+ memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
|
|
|
+ } else {
|
|
|
+ const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
|
|
|
+ memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Invert if needed
|
|
|
+ if (invert) {
|
|
|
+ InvertCharacter(oled_cursor);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Dirty check
|
|
|
+ if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
|
|
|
+ uint16_t index = oled_cursor - &oled_buffer[0];
|
|
|
+ oled_dirty |= (1 << (index / OLED_BLOCK_SIZE));
|
|
|
+ // Edgecase check if the written data spans the 2 chunks
|
|
|
+ oled_dirty |= (1 << ((index + OLED_FONT_WIDTH) / OLED_BLOCK_SIZE));
|
|
|
+ }
|
|
|
+
|
|
|
+ // Finally move to the next char
|
|
|
+ oled_advance_char();
|
|
|
}
|
|
|
|
|
|
void oled_write(const char *data, bool invert) {
|
|
|
- const char *end = data + strlen(data);
|
|
|
- while (data < end) {
|
|
|
- oled_write_char(*data, invert);
|
|
|
- data++;
|
|
|
- }
|
|
|
+ const char *end = data + strlen(data);
|
|
|
+ while (data < end) {
|
|
|
+ oled_write_char(*data, invert);
|
|
|
+ data++;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
void oled_write_ln(const char *data, bool invert) {
|
|
|
- oled_write(data, invert);
|
|
|
- oled_advance_page(true);
|
|
|
+ oled_write(data, invert);
|
|
|
+ oled_advance_page(true);
|
|
|
}
|
|
|
|
|
|
#if defined(__AVR__)
|
|
|
void oled_write_P(const char *data, bool invert) {
|
|
|
- uint8_t c = pgm_read_byte(data);
|
|
|
- while (c != 0) {
|
|
|
- oled_write_char(c, invert);
|
|
|
- c = pgm_read_byte(++data);
|
|
|
- }
|
|
|
+ uint8_t c = pgm_read_byte(data);
|
|
|
+ while (c != 0) {
|
|
|
+ oled_write_char(c, invert);
|
|
|
+ c = pgm_read_byte(++data);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
void oled_write_ln_P(const char *data, bool invert) {
|
|
|
- oled_write_P(data, invert);
|
|
|
- oled_advance_page(true);
|
|
|
+ oled_write_P(data, invert);
|
|
|
+ oled_advance_page(true);
|
|
|
}
|
|
|
-#endif // defined(__AVR__)
|
|
|
+#endif // defined(__AVR__)
|
|
|
|
|
|
bool oled_on(void) {
|
|
|
#if !defined(OLED_DISABLE_TIMEOUT)
|
|
|
- oled_last_activity = timer_read();
|
|
|
+ oled_last_activity = timer_read();
|
|
|
#endif
|
|
|
|
|
|
- static const uint8_t PROGMEM display_on[] = { I2C_CMD, DISPLAY_ON };
|
|
|
- if (!oled_active) {
|
|
|
- if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
|
|
|
- print("oled_on cmd failed\n");
|
|
|
- return oled_active;
|
|
|
+ static const uint8_t PROGMEM display_on[] = {I2C_CMD, DISPLAY_ON};
|
|
|
+ if (!oled_active) {
|
|
|
+ if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("oled_on cmd failed\n");
|
|
|
+ return oled_active;
|
|
|
+ }
|
|
|
+ oled_active = true;
|
|
|
}
|
|
|
- oled_active = true;
|
|
|
- }
|
|
|
- return oled_active;
|
|
|
+ return oled_active;
|
|
|
}
|
|
|
|
|
|
bool oled_off(void) {
|
|
|
- static const uint8_t PROGMEM display_off[] = { I2C_CMD, DISPLAY_OFF };
|
|
|
- if (oled_active) {
|
|
|
- if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
|
|
|
- print("oled_off cmd failed\n");
|
|
|
- return oled_active;
|
|
|
+ static const uint8_t PROGMEM display_off[] = {I2C_CMD, DISPLAY_OFF};
|
|
|
+ if (oled_active) {
|
|
|
+ if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("oled_off cmd failed\n");
|
|
|
+ return oled_active;
|
|
|
+ }
|
|
|
+ oled_active = false;
|
|
|
}
|
|
|
- oled_active = false;
|
|
|
- }
|
|
|
- return !oled_active;
|
|
|
+ return !oled_active;
|
|
|
}
|
|
|
|
|
|
bool oled_scroll_right(void) {
|
|
|
- // Dont enable scrolling if we need to update the display
|
|
|
- // This prevents scrolling of bad data from starting the scroll too early after init
|
|
|
- if (!oled_dirty && !oled_scrolling) {
|
|
|
- static const uint8_t PROGMEM display_scroll_right[] = {
|
|
|
- I2C_CMD, SCROLL_RIGHT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL };
|
|
|
- if (I2C_TRANSMIT_P(display_scroll_right) != I2C_STATUS_SUCCESS) {
|
|
|
- print("oled_scroll_right cmd failed\n");
|
|
|
- return oled_scrolling;
|
|
|
+ // Dont enable scrolling if we need to update the display
|
|
|
+ // This prevents scrolling of bad data from starting the scroll too early after init
|
|
|
+ if (!oled_dirty && !oled_scrolling) {
|
|
|
+ static const uint8_t PROGMEM display_scroll_right[] = {I2C_CMD, SCROLL_RIGHT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL};
|
|
|
+ if (I2C_TRANSMIT_P(display_scroll_right) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("oled_scroll_right cmd failed\n");
|
|
|
+ return oled_scrolling;
|
|
|
+ }
|
|
|
+ oled_scrolling = true;
|
|
|
}
|
|
|
- oled_scrolling = true;
|
|
|
- }
|
|
|
- return oled_scrolling;
|
|
|
+ return oled_scrolling;
|
|
|
}
|
|
|
|
|
|
bool oled_scroll_left(void) {
|
|
|
- // Dont enable scrolling if we need to update the display
|
|
|
- // This prevents scrolling of bad data from starting the scroll too early after init
|
|
|
- if (!oled_dirty && !oled_scrolling) {
|
|
|
- static const uint8_t PROGMEM display_scroll_left[] = {
|
|
|
- I2C_CMD, SCROLL_LEFT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL };
|
|
|
- if (I2C_TRANSMIT_P(display_scroll_left) != I2C_STATUS_SUCCESS) {
|
|
|
- print("oled_scroll_left cmd failed\n");
|
|
|
- return oled_scrolling;
|
|
|
+ // Dont enable scrolling if we need to update the display
|
|
|
+ // This prevents scrolling of bad data from starting the scroll too early after init
|
|
|
+ if (!oled_dirty && !oled_scrolling) {
|
|
|
+ static const uint8_t PROGMEM display_scroll_left[] = {I2C_CMD, SCROLL_LEFT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL};
|
|
|
+ if (I2C_TRANSMIT_P(display_scroll_left) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("oled_scroll_left cmd failed\n");
|
|
|
+ return oled_scrolling;
|
|
|
+ }
|
|
|
+ oled_scrolling = true;
|
|
|
}
|
|
|
- oled_scrolling = true;
|
|
|
- }
|
|
|
- return oled_scrolling;
|
|
|
+ return oled_scrolling;
|
|
|
}
|
|
|
|
|
|
bool oled_scroll_off(void) {
|
|
|
- if (oled_scrolling) {
|
|
|
- static const uint8_t PROGMEM display_scroll_off[] = { I2C_CMD, DEACTIVATE_SCROLL };
|
|
|
- if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
|
|
|
- print("oled_scroll_off cmd failed\n");
|
|
|
- return oled_scrolling;
|
|
|
+ if (oled_scrolling) {
|
|
|
+ static const uint8_t PROGMEM display_scroll_off[] = {I2C_CMD, DEACTIVATE_SCROLL};
|
|
|
+ if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
|
|
|
+ print("oled_scroll_off cmd failed\n");
|
|
|
+ return oled_scrolling;
|
|
|
+ }
|
|
|
+ oled_scrolling = false;
|
|
|
}
|
|
|
- oled_scrolling = false;
|
|
|
- }
|
|
|
- return !oled_scrolling;
|
|
|
+ return !oled_scrolling;
|
|
|
}
|
|
|
|
|
|
uint8_t oled_max_chars(void) {
|
|
|
- if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
- return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
|
|
|
- }
|
|
|
- return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
|
|
|
+ if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
+ return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
|
|
|
+ }
|
|
|
+ return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
|
|
|
}
|
|
|
|
|
|
uint8_t oled_max_lines(void) {
|
|
|
- if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
- return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
|
|
|
- }
|
|
|
- return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
|
|
|
+ if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
|
+ return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
|
|
|
+ }
|
|
|
+ return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
|
|
|
}
|
|
|
|
|
|
void oled_task(void) {
|
|
|
- if (!oled_initialized) {
|
|
|
- return;
|
|
|
- }
|
|
|
+ if (!oled_initialized) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
|
|
|
- oled_set_cursor(0, 0);
|
|
|
+ oled_set_cursor(0, 0);
|
|
|
|
|
|
- oled_task_user();
|
|
|
+ oled_task_user();
|
|
|
|
|
|
- // Smart render system, no need to check for dirty
|
|
|
- oled_render();
|
|
|
+ // Smart render system, no need to check for dirty
|
|
|
+ oled_render();
|
|
|
|
|
|
- // Display timeout check
|
|
|
+ // Display timeout check
|
|
|
#if !defined(OLED_DISABLE_TIMEOUT)
|
|
|
- if (oled_active && timer_elapsed(oled_last_activity) > OLED_TIMEOUT) {
|
|
|
- oled_off();
|
|
|
- }
|
|
|
+ if (oled_active && timer_elapsed(oled_last_activity) > OLED_TIMEOUT) {
|
|
|
+ oled_off();
|
|
|
+ }
|
|
|
#endif
|
|
|
}
|
|
|
|
|
|
-__attribute__((weak))
|
|
|
-void oled_task_user(void) {
|
|
|
-}
|
|
|
+__attribute__((weak)) void oled_task_user(void) {}
|