matrix.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
  1. /*
  2. Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com>
  3. Copyright 2017 Erin Call <hello@erincall.com>
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. #include <stdint.h>
  16. #include <stdbool.h>
  17. #include <avr/io.h>
  18. #include "wait.h"
  19. #include "action_layer.h"
  20. #include "print.h"
  21. #include "debug.h"
  22. #include "util.h"
  23. #include "matrix.h"
  24. #include "dactyl.h"
  25. #include "i2cmaster.h"
  26. #include "timer.h"
  27. /* Set 0 if debouncing isn't needed */
  28. #ifndef DEBOUNCING_DELAY
  29. # define DEBOUNCING_DELAY 5
  30. #endif
  31. #if (DEBOUNCING_DELAY > 0)
  32. static uint16_t debouncing_time;
  33. static bool debouncing = false;
  34. #endif
  35. #ifdef MATRIX_MASKED
  36. extern const matrix_row_t matrix_mask[];
  37. #endif
  38. #if (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
  39. static const uint8_t onboard_row_pins[MATRIX_ROWS] = MATRIX_ONBOARD_ROW_PINS;
  40. static const uint8_t onboard_col_pins[MATRIX_COLS] = MATRIX_ONBOARD_COL_PINS;
  41. static const bool col_expanded[MATRIX_COLS] = COL_EXPANDED;
  42. #endif
  43. /* matrix state(1:on, 0:off) */
  44. static matrix_row_t matrix[MATRIX_ROWS];
  45. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  46. #if (DIODE_DIRECTION == COL2ROW)
  47. static const uint8_t expander_col_pins[MATRIX_COLS] = MATRIX_EXPANDER_COL_PINS;
  48. static void init_cols(void);
  49. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
  50. static void unselect_rows(void);
  51. static void select_row(uint8_t row);
  52. static void unselect_row(uint8_t row);
  53. #elif (DIODE_DIRECTION == ROW2COL)
  54. static const uint8_t expander_row_pins[MATRIX_ROWS] = MATRIX_EXPANDER_ROW_PINS;
  55. static void init_rows(void);
  56. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
  57. static void unselect_cols(void);
  58. static void select_col(uint8_t col);
  59. static void unselect_col(uint8_t col);
  60. #endif
  61. static uint8_t expander_reset_loop;
  62. uint8_t expander_status;
  63. uint8_t expander_input_pin_mask;
  64. bool i2c_initialized = false;
  65. #ifdef DEBUG_MATRIX_SCAN_RATE
  66. uint32_t matrix_timer;
  67. uint32_t matrix_scan_count;
  68. #endif
  69. #define ROW_SHIFTER ((matrix_row_t)1)
  70. #if (DIODE_DIRECTION == COL2ROW)
  71. // bitmask to ensure the row state from the expander only applies to its columns
  72. #define EXPANDER_MASK ((matrix_row_t)0b00111111)
  73. #endif
  74. __attribute__ ((weak))
  75. void matrix_init_user(void) {}
  76. __attribute__ ((weak))
  77. void matrix_scan_user(void) {}
  78. __attribute__ ((weak))
  79. void matrix_init_kb(void) {
  80. matrix_init_user();
  81. }
  82. __attribute__ ((weak))
  83. void matrix_scan_kb(void) {
  84. matrix_scan_user();
  85. }
  86. inline
  87. uint8_t matrix_rows(void)
  88. {
  89. return MATRIX_ROWS;
  90. }
  91. inline
  92. uint8_t matrix_cols(void)
  93. {
  94. return MATRIX_COLS;
  95. }
  96. void matrix_init(void)
  97. {
  98. init_expander();
  99. #if (DIODE_DIRECTION == COL2ROW)
  100. unselect_rows();
  101. init_cols();
  102. #elif (DIODE_DIRECTION == ROW2COL)
  103. unselect_cols();
  104. init_rows();
  105. #endif
  106. // initialize matrix state: all keys off
  107. for (uint8_t i=0; i < MATRIX_ROWS; i++) {
  108. matrix[i] = 0;
  109. matrix_debouncing[i] = 0;
  110. }
  111. #ifdef DEBUG_MATRIX_SCAN_RATE
  112. matrix_timer = timer_read32();
  113. matrix_scan_count = 0;
  114. #endif
  115. matrix_init_quantum();
  116. }
  117. void init_expander(void) {
  118. if (! i2c_initialized) {
  119. i2c_init();
  120. wait_us(1000000);
  121. }
  122. if (! expander_input_pin_mask) {
  123. #if (DIODE_DIRECTION == COL2ROW)
  124. for (int col = 0; col < MATRIX_COLS; col++) {
  125. if (col_expanded[col]) {
  126. expander_input_pin_mask |= (1 << expander_col_pins[col]);
  127. }
  128. }
  129. #elif (DIODE_DIRECTION == ROW2COL)
  130. for (int row = 0; row < MATRIX_ROWS; row++) {
  131. expander_input_pin_mask |= (1 << expander_row_pins[row]);
  132. }
  133. #endif
  134. }
  135. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  136. expander_status = i2c_write(IODIRA); if (expander_status) goto out;
  137. /*
  138. Pin direction and pull-up depends on both the diode direction
  139. and on whether the column register is 0 ("A") or 1 ("B"):
  140. +-------+---------------+---------------+
  141. | | ROW2COL | COL2ROW |
  142. +-------+---------------+---------------+
  143. | Reg 0 | input, output | output, input |
  144. +-------+---------------+---------------+
  145. | Reg 1 | output, input | input, output |
  146. +-------+---------------+---------------+
  147. */
  148. #if (EXPANDER_COLUMN_REGISTER == 0)
  149. # if (DIODE_DIRECTION == COL2ROW)
  150. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  151. expander_status = i2c_write(0); if (expander_status) goto out;
  152. # elif (DIODE_DIRECTION == ROW2COL)
  153. expander_status = i2c_write(0); if (expander_status) goto out;
  154. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  155. # endif
  156. #elif (EXPANDER_COLUMN_REGISTER == 1)
  157. # if (DIODE_DIRECTION == COL2ROW)
  158. expander_status = i2c_write(0); if (expander_status) goto out;
  159. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  160. # elif (DIODE_DIRECTION == ROW2COL)
  161. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  162. expander_status = i2c_write(0); if (expander_status) goto out;
  163. # endif
  164. #endif
  165. i2c_stop();
  166. // set pull-up
  167. // - unused : off : 0
  168. // - input : on : 1
  169. // - driving : off : 0
  170. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  171. expander_status = i2c_write(GPPUA); if (expander_status) goto out;
  172. #if (EXPANDER_COLUMN_REGISTER == 0)
  173. # if (DIODE_DIRECTION == COL2ROW)
  174. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  175. expander_status = i2c_write(0); if (expander_status) goto out;
  176. # elif (DIODE_DIRECTION == ROW2COL)
  177. expander_status = i2c_write(0); if (expander_status) goto out;
  178. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  179. # endif
  180. #elif (EXPANDER_COLUMN_REGISTER == 1)
  181. # if (DIODE_DIRECTION == COL2ROW)
  182. expander_status = i2c_write(0); if (expander_status) goto out;
  183. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  184. # elif (DIODE_DIRECTION == ROW2COL)
  185. expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
  186. expander_status = i2c_write(0); if (expander_status) goto out;
  187. # endif
  188. #endif
  189. out:
  190. i2c_stop();
  191. }
  192. uint8_t matrix_scan(void)
  193. {
  194. if (expander_status) { // if there was an error
  195. if (++expander_reset_loop == 0) {
  196. // since expander_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
  197. // this will be approx bit more frequent than once per second
  198. print("trying to reset expander\n");
  199. init_expander();
  200. if (expander_status) {
  201. print("left side not responding\n");
  202. } else {
  203. print("left side attached\n");
  204. }
  205. }
  206. }
  207. #ifdef DEBUG_MATRIX_SCAN_RATE
  208. matrix_scan_count++;
  209. uint32_t timer_now = timer_read32();
  210. if (TIMER_DIFF_32(timer_now, matrix_timer)>1000) {
  211. print("matrix scan frequency: ");
  212. pdec(matrix_scan_count);
  213. print("\n");
  214. matrix_timer = timer_now;
  215. matrix_scan_count = 0;
  216. }
  217. #endif
  218. #if (DIODE_DIRECTION == COL2ROW)
  219. for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
  220. # if (DEBOUNCING_DELAY > 0)
  221. bool matrix_changed = read_cols_on_row(matrix_debouncing, current_row);
  222. if (matrix_changed) {
  223. debouncing = true;
  224. debouncing_time = timer_read();
  225. }
  226. # else
  227. read_cols_on_row(matrix, current_row);
  228. # endif
  229. }
  230. #elif (DIODE_DIRECTION == ROW2COL)
  231. for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
  232. # if (DEBOUNCING_DELAY > 0)
  233. bool matrix_changed = read_rows_on_col(matrix_debouncing, current_col);
  234. if (matrix_changed) {
  235. debouncing = true;
  236. debouncing_time = timer_read();
  237. }
  238. # else
  239. read_rows_on_col(matrix, current_col);
  240. # endif
  241. }
  242. #endif
  243. # if (DEBOUNCING_DELAY > 0)
  244. if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
  245. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  246. matrix[i] = matrix_debouncing[i];
  247. }
  248. debouncing = false;
  249. }
  250. # endif
  251. matrix_scan_quantum();
  252. return 1;
  253. }
  254. bool matrix_is_modified(void) // deprecated and evidently not called.
  255. {
  256. #if (DEBOUNCING_DELAY > 0)
  257. if (debouncing) return false;
  258. #endif
  259. return true;
  260. }
  261. inline
  262. bool matrix_is_on(uint8_t row, uint8_t col)
  263. {
  264. return (matrix[row] & (ROW_SHIFTER << col));
  265. }
  266. inline
  267. matrix_row_t matrix_get_row(uint8_t row)
  268. {
  269. #ifdef MATRIX_MASKED
  270. return matrix[row] & matrix_mask[row];
  271. #else
  272. return matrix[row];
  273. #endif
  274. }
  275. void matrix_print(void)
  276. {
  277. print("\nr/c 0123456789ABCDEF\n");
  278. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  279. phex(row); print(": ");
  280. pbin_reverse16(matrix_get_row(row));
  281. print("\n");
  282. }
  283. }
  284. uint8_t matrix_key_count(void)
  285. {
  286. uint8_t count = 0;
  287. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  288. count += bitpop16(matrix[i]);
  289. }
  290. return count;
  291. }
  292. #if (DIODE_DIRECTION == COL2ROW)
  293. static void init_cols(void) {
  294. for (uint8_t x = 0; x < MATRIX_COLS; x++) {
  295. if (! col_expanded[x]) {
  296. uint8_t pin = onboard_col_pins[x];
  297. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  298. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  299. }
  300. }
  301. }
  302. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
  303. // Store last value of row prior to reading
  304. matrix_row_t last_row_value = current_matrix[current_row];
  305. // Clear data in matrix row
  306. current_matrix[current_row] = 0;
  307. // Select row and wait for row selection to stabilize
  308. select_row(current_row);
  309. wait_us(30);
  310. // Read columns from expander, unless it's in an error state
  311. if (! expander_status) {
  312. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  313. expander_status = i2c_write(GPIOA); if (expander_status) goto out;
  314. expander_status = i2c_start(I2C_ADDR_READ); if (expander_status) goto out;
  315. current_matrix[current_row] |= (~i2c_readNak()) & EXPANDER_MASK;
  316. out:
  317. i2c_stop();
  318. }
  319. // Read columns from onboard pins
  320. for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
  321. if (! col_expanded[col_index]) {
  322. uint8_t pin = onboard_col_pins[col_index];
  323. uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
  324. current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
  325. }
  326. }
  327. unselect_row(current_row);
  328. return (last_row_value != current_matrix[current_row]);
  329. }
  330. static void select_row(uint8_t row) {
  331. // select on expander, unless it's in an error state
  332. if (! expander_status) {
  333. // set active row low : 0
  334. // set other rows hi-Z : 1
  335. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  336. expander_status = i2c_write(GPIOB); if (expander_status) goto out;
  337. expander_status = i2c_write(0xFF & ~(1<<row)); if (expander_status) goto out;
  338. out:
  339. i2c_stop();
  340. }
  341. // select on teensy
  342. uint8_t pin = onboard_row_pins[row];
  343. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  344. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  345. }
  346. static void unselect_row(uint8_t row)
  347. {
  348. // No need to explicitly unselect expander pins--their I/O state is
  349. // set simultaneously, with a single bitmask sent to i2c_write. When
  350. // select_row selects a single pin, it implicitly unselects all the
  351. // other ones.
  352. // unselect on teensy
  353. uint8_t pin = onboard_row_pins[row];
  354. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // OUT
  355. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // LOW
  356. }
  357. static void unselect_rows(void) {
  358. for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
  359. unselect_row(x);
  360. }
  361. }
  362. #elif (DIODE_DIRECTION == ROW2COL)
  363. static void init_rows(void)
  364. {
  365. for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
  366. uint8_t pin = onboard_row_pins[x];
  367. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  368. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  369. }
  370. }
  371. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
  372. {
  373. bool matrix_changed = false;
  374. uint8_t column_state = 0;
  375. //select col and wait for selection to stabilize
  376. select_col(current_col);
  377. wait_us(30);
  378. if (current_col < 6) {
  379. // read rows from expander
  380. if (expander_status) {
  381. // it's already in an error state; nothing we can do
  382. return false;
  383. }
  384. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  385. expander_status = i2c_write(GPIOB); if (expander_status) goto out;
  386. expander_status = i2c_start(I2C_ADDR_READ); if (expander_status) goto out;
  387. column_state = i2c_readNak();
  388. out:
  389. i2c_stop();
  390. column_state = ~column_state;
  391. } else {
  392. for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
  393. if ((_SFR_IO8(onboard_row_pins[current_row] >> 4) & _BV(onboard_row_pins[current_row] & 0xF)) == 0) {
  394. column_state |= (1 << current_row);
  395. }
  396. }
  397. }
  398. for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
  399. // Store last value of row prior to reading
  400. matrix_row_t last_row_value = current_matrix[current_row];
  401. if (column_state & (1 << current_row)) {
  402. // key closed; set state bit in matrix
  403. current_matrix[current_row] |= (ROW_SHIFTER << current_col);
  404. } else {
  405. // key open; clear state bit in matrix
  406. current_matrix[current_row] &= ~(ROW_SHIFTER << current_col);
  407. }
  408. // Determine whether the matrix changed state
  409. if ((last_row_value != current_matrix[current_row]) && !(matrix_changed))
  410. {
  411. matrix_changed = true;
  412. }
  413. }
  414. unselect_col(current_col);
  415. return matrix_changed;
  416. }
  417. static void select_col(uint8_t col)
  418. {
  419. if (col_expanded[col]) {
  420. // select on expander
  421. if (expander_status) { // if there was an error
  422. // do nothing
  423. } else {
  424. // set active col low : 0
  425. // set other cols hi-Z : 1
  426. expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
  427. expander_status = i2c_write(GPIOA); if (expander_status) goto out;
  428. expander_status = i2c_write(0xFF & ~(1<<col)); if (expander_status) goto out;
  429. out:
  430. i2c_stop();
  431. }
  432. } else {
  433. // select on teensy
  434. uint8_t pin = onboard_col_pins[col];
  435. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  436. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  437. }
  438. }
  439. static void unselect_col(uint8_t col)
  440. {
  441. if (col_expanded[col]) {
  442. // No need to explicitly unselect expander pins--their I/O state is
  443. // set simultaneously, with a single bitmask sent to i2c_write. When
  444. // select_col selects a single pin, it implicitly unselects all the
  445. // other ones.
  446. } else {
  447. // unselect on teensy
  448. uint8_t pin = onboard_col_pins[col];
  449. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  450. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  451. }
  452. }
  453. static void unselect_cols(void)
  454. {
  455. for(uint8_t x = 0; x < MATRIX_COLS; x++) {
  456. unselect_col(x);
  457. }
  458. }
  459. #endif